71 research outputs found

    Complete Genome Sequences of Paenibacillus Larvae Phages BN12, Dragolir, Kiel007, Leyra, Likha, Pagassa, PBL1c, and Tadhana

    Get PDF
    We present here the complete genomes of eight phages that infect Paenibacillus larvae, the causative agent of American foulbrood in honeybees. Phage PBL1c was originally isolated in 1984 from a P. larvae lysogen, while the remaining phages were isolated in 2014 from bee debris, honeycomb, and lysogens from three states in the USA

    TESS spots a mini-neptune interior to a hot saturn in the TOI-2000 system

    Get PDF
    Hot jupiters (P 60 M\mathrm{M}_\oplus) are almost always found alone around their stars, but four out of hundreds known have inner companion planets. These rare companions allow us to constrain the hot jupiter's formation history by ruling out high-eccentricity tidal migration. Less is known about inner companions to hot Saturn-mass planets. We report here the discovery of the TOI-2000 system, which features a hot Saturn-mass planet with a smaller inner companion. The mini-neptune TOI-2000 b (2.70±0.15R2.70 \pm 0.15 \,\mathrm{R}_\oplus, 11.0±2.4M11.0 \pm 2.4 \,\mathrm{M}_\oplus) is in a 3.10-day orbit, and the hot saturn TOI-2000 c (8.140.30+0.31R8.14^{+0.31}_{-0.30} \,\mathrm{R}_\oplus, 81.74.6+4.7M81.7^{+4.7}_{-4.6} \,\mathrm{M}_\oplus) is in a 9.13-day orbit. Both planets transit their host star TOI-2000 (TIC 371188886, V = 10.98, TESS magnitude = 10.36), a metal-rich ([Fe/H] = 0.4390.043+0.0410.439^{+0.041}_{-0.043}) G dwarf 174 pc away. TESS observed the two planets in sectors 9-11 and 36-38, and we followed up with ground-based photometry, spectroscopy, and speckle imaging. Radial velocities from CHIRON, FEROS, and HARPS allowed us to confirm both planets by direct mass measurement. In addition, we demonstrate constraining planetary and stellar parameters with MIST stellar evolutionary tracks through Hamiltonian Monte Carlo under the PyMC framework, achieving higher sampling efficiency and shorter run time compared to traditional Markov chain Monte Carlo. Having the brightest host star in the V band among similar systems, TOI-2000 b and c are superb candidates for atmospheric characterization by the JWST, which can potentially distinguish whether they formed together or TOI-2000 c swept along material during migration to form TOI-2000 b.Comment: v3 adds RV frequency analysis; 25 pages, 11 figures, 14 tables; revision submitted to MNRAS; machine-readable tables available as ancillary files; posterior samples available from Zenodo at https://doi.org/10.5281/zenodo.7683293 and source code at https://doi.org/10.5281/zenodo.798826

    The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets

    Get PDF
    NASA's Transiting Exoplanet Survey Satellite (TESS) mission promises to improve our understanding of hot Jupiters by providing an all-sky, magnitude-limited sample of transiting hot Jupiters suitable for population studies. Assembling such a sample requires confirming hundreds of planet candidates with additional follow-up observations. Here, we present twenty hot Jupiters that were detected using TESS data and confirmed to be planets through photometric, spectroscopic, and imaging observations coordinated by the TESS Follow-up Observing Program (TFOP). These twenty planets have orbital periods shorter than 7 days and orbit relatively bright FGK stars (10.9<G<13.010.9 < G < 13.0). Most of the planets are comparable in mass to Jupiter, although there are four planets with masses less than that of Saturn. TOI-3976 b, the longest period planet in our sample (P=6.6P = 6.6 days), may be on a moderately eccentric orbit (e=0.18±0.06e = 0.18\pm0.06), while observations of the other targets are consistent with them being on circular orbits. We measured the projected stellar obliquity of TOI-1937A b, a hot Jupiter on a 22.4 hour orbit with the Rossiter-McLaughlin effect, finding the planet's orbit to be well-aligned with the stellar spin axis (λ=4.0±3.5|\lambda| = 4.0\pm3.5^\circ). We also investigated the possibility that TOI-1937 is a member of the NGC 2516 open cluster, but ultimately found the evidence for cluster membership to be ambiguous. These objects are part of a larger effort to build a complete sample of hot Jupiters to be used for future demographic and detailed characterization work.Comment: 67 pages, 11 tables, 13 figures, 2 figure sets. Resubmitted to ApJS after revision

    Biomass preservation in impact melt ejecta

    No full text
    Meteorites can have played a role in the delivery of the building blocks of life to Earth only if organic compounds are able to survive the high pressures and temperatures of an impact event. Although experimental impact studies have reported the survival of organic compounds, there are uncertainties in scaling experimental conditions to those of a meteorite impact on Earth and organic matter has not been found in highly shocked impact materials in a natural setting. Impact glass linked to the 1.2-km-diameter Darwin crater in western Tasmania is strewn over an area exceeding 400 km2 and is thought to have been ejected by a meteorite impact about 800 kyr ago into terrain consisting of rainforest and swamp. Here we use pyrolysis–gas chromatography–mass spectrometry to show that biomarkers representative of plant species in the local ecosystem—including cellulose, lignin, aliphatic biopolymer and protein remnants—survived the Darwin impact. We find that inside the impact glass the organic components are trapped in porous carbon spheres. We propose that the organic material was captured within impact melt and preserved when the melt quenched to glass, preventing organic decomposition since the impact. We suggest that organic material can survive capture and transport in products of extreme impact processing, at least for a Darwin-sized impact event
    corecore